
Peripheral Device Control Guide
TM-DT Series

M00109703

Rev.D

Overview

Controlling by a Device Control Program

Developing a Device Control Program

Controlling by a Device Control Script

Developing a Device Control Script

Precautions
 Unauthorized duplication, copying, reproduction, or modification of any part or all of this document is strictly

prohibited.

 Contents of this manual are subject to change without prior notice. Contact us directly for the most recent
information.

 Every effort is made to ensure that the contents of this manual are without error. Please contact us if any errors
or other issues are found.

 The previous statement notwithstanding, we will not be liable for any negative impact as a result of use.

 Epson shall not be liable for any damages caused as a result of using this product incorrectly, failing to comply
with the content of this document, or having repair or modifications performed by third parties other than
Epson or those specified by Epson.

 Epson shall not be liable for any issues as a result of installing optional parts or consumables that are not gen-
uine Epson parts or parts certified by Epson.

Trademarks
EPSON and EXCEED YOUR VISION are registered trademarks of Seiko Epson Corporation.

Windows® and Internet Explorer® are trademarks or registered trademarks of Microsoft Corporation in the US and
other countries.

Other company names or product names are trademarks or registered trademarks of their respective companies.

© Seiko Epson Corporation 2017-2019. All rights reserved.

3

Safety Precautions

Meaning of Symbols

The following symbols are used in this manual. Make sure to understand the meaning of these symbols before
using the product.

Usage Limitations
Please use our products in environments and systems designed with consideration to safety and disaster
recovery such as fail-safe configurations and redundant designs, for example, if this product is used in
applications in which a high level of reliability and safety in functionality and precision is required such as in
aircraft, trains, ships, automobiles and other transportation-related applications or in crime prevention
equipment and safety equipment.
This product is not intended for use in applications that require extremely high levels of reliability and safety
such as in aerospace equipment, trunk-line communications equipment, nuclear power control equipment, and
medical equipment. Consider your usage environment and requirements carefully before using this product in
such applications.

About this Manual

Purpose of this Manual

This manual describes the methods for controlling the peripheral devices by a TM-DT series printer.

Organization of this Manual

This manual is organized into the following chapters.

Describes usage precautions that must be observed. Incorrect handling due to the disregard of this informa-
tion may result in product failure or incorrect operation.

Describes additional explanation or other useful information.

Chapter 1 Overview

Chapter 2 Controlling by a Device Control Program

Chapter 3 Developing a Device Control Program

Chapter 4 Controlling by a Device Control Script

Chapter 5 Developing a Device Control Script

4

Contents
■ Safety Precautions ... 3

Meaning of Symbols...3

■ Usage Limitations .. 3

■ About this Manual.. 3

Purpose of this Manual..3
Organization of this Manual ..3

■ Contents ... 4

Overview ..6

■ Supported Printers and Peripheral Devices... 8

Supported Printers..8
Controllable Peripheral Devices...8

■ Environmental Settings... 9

Windows Settings..9
EPSON TMNet WebConfig ..9

Controlling by a Device Control Program10

■ Environment Construction... 11

■ Device Registration .. 12

Developing a Device Control Program ...14

■ Overview .. 14

Configuration of a Device Control Program ... 14
Operation Sequence ... 15
Sample Program ... 16

■ Methods Provided by GGateway.dll... 17

Open Method... 17
Receive Method .. 18
Send Method.. 19
Close Method... 19

■ Element Object... 20

Constructor... 20
getName Method ... 21
getValue Method.. 21
getType Method ... 21
getParent Method .. 22
haveChild Method.. 22
getChildrenNum Method .. 22
getChild Method... 23
addChild Method.. 23

5

■ Adding a Program .. 24

■ Device Registration .. 26

Controlling by a Device Control Script..27

■ Device Registration .. 28

Key Input Device... 28
Serial Communication Device.. 30

Developing a Device Control Script ..32

■ Overview .. 32

Epson ePOS SDK for JavaScript ... 32
ePOS-Device XML... 33
Device Control Script Objects .. 33
Functions that Use Device Control Script Objects.. 33
Configuration of a Device Control Script ... 34

■ List of Device Control Script APIs ... 36

ClientConnection Object ... 36
DeviceConnection Object ... 36
Device Control Scripts Naming Object... 36

■ ClientConnection Object .. 37

send ... 37

■ DeviceConnection Object... 38

send ... 38

■ Device Control Scripts Naming Object ... 39

onDeviceData Event (key input device) ... 39
onDeviceData Event (serial communication device)... 40
User-defined Event .. 40

■ Adding a Script... 41

■ Device Registration .. 43

6

Chapter 1 Overview

Overview
In addition to the peripheral devices by Epson, you can control various peripheral devices from the TM-DT series
printers (TM-DT series) using the device control programs or device control scripts developed uniquely by Epson.

For details on the development of applications that control the TM-DT series and each peripheral device, refer to
the user’s manuals of Epson ePOS SDK and ePOS-Device XML.

What is a device control program?
A device control program is an execution file that sends a command from the ePOS-Device Service to the
peripheral devices, and returns the execution results.

In the categories described below, peripheral devices having a driver (OPOS driver) that runs in combination with
OPOS Common Control Object (OPOS CCO) 1.14.001 can be controlled.

 MSRs

 POS keyboards

 Barcode scanners

For details on the control method, refer to Controlling by a Device Control Program.

For TM-T70II-DT, TM-T88V-DT, or TM-H6000IV-DT, the device control program is available with version 4.0 or
later TM-DT software.

Application

TM-DT Series

Local Printer

Network Priner Customer Display

ePOS-Device Service

Peripheral Device
Conforming to

OPOS Specifications

Key Input Device

Serial Communication Device

Device Control
Program

Device Control
Script

OPOS CCO

OPOS Driver

7

Chapter 1 Overview

In the TM-DT series, APIs are also available for the development of the device control program.

By developing a program conforming to the communication protocol of the peripheral devices, not only the
peripheral devices conforming to the OPOS specifications, but any peripheral device can be controlled.

For details on the development method, refer to Developing a Device Control Program.

What is a device control script?
A device control script is a JavaScript file that sends a command from the ePOS-Device Service to the peripheral
devices, and returns the execution results.

It is loaded to the TM-DT series, and can control supported key input devices and serial communication devices.

For details on the control method, refer to Controlling by a Device Control Script.

In the TM-DT series, APIs are also available for the development of the device control script.

By developing a script file conforming to the communication protocol of the peripheral devices, any peripheral
device can be controlled.

For details on the development method, refer to Developing a Device Control Script.

8

Chapter 1 Overview

Supported Printers and Peripheral Devices

Supported Printers

❏ TM-T70II-DT

❏ TM-T70II-DT2

❏ TM-T88V-DT

❏ TM-T88VI-DT2

❏ TM-H6000IV-DT

Controllable Peripheral Devices

The following peripheral devices can be controlled.

Epson products
The following Epson peripheral devices can be controlled.

For details on the products and control methods that can be used, refer to the Technical Reference Guide of the
TM-DT series.

❏ Printer

❏ Customer display

Peripheral devices controlled by a device control program
In the categories described below, peripheral devices having a driver that runs in combination with OPOS CCO
1.14.001 can be controlled.

 MSRs

 POS keyboards

 Barcode scanners

Peripheral devices controlled by a device control script
❏ Key input devices

 MSRs (Hitachi-Omron V3TU-FK)

 Keyboards (Standard HID)

 Barcode scanners (Standard HID)

❏ Serial communication devices

 Serial communication devices

 USB devices that can be controlled in a similar manner as a serial communication device

Install a dedicated driver for using a USB device that can be controlled in a similar manner as a serial commu-
nication device.
You may not be able to use some drivers depending on their specifications.

9

Chapter 1 Overview

 Environmental Settings
This section describes the default settings necessary for controlling peripheral devices in the TM-DT series.

Windows Settings

Make the default settings for the Windows OS loaded in the TM-DT series.

Refer to the Technical Reference Guide of the TM-DT series to make the necessary default settings.

EPSON TMNet WebConfig

You must register the peripheral devices to be used in the TM-DT series.

You must also set the device control program and device control script in each peripheral device.

Use the TM-DT series EPSON TMNet WebConfig for performing the registration and making settings.

Refer to the Technical Reference Guide of the TM-DT series for EPSON TMNet WebConfig.

10

Chapter 2 Controlling by a Device Control Program

Controlling by a Device Control Program
This section describes the method of controlling peripheral devices conforming to the OPOS specifications by
using the device control program loaded in the TM-DT series.

In the TM-DT series, a device control program is available for each category of peripheral devices.

Control the peripheral devices conforming to the OPOS specifications by using OPOS CCO and an OPOS driver
for the peripheral devices.

Application

TM-DT Series

ePOS-Device Service

OPOS CCO

MSR

OposMSR
Handler.exe

OPOS Driver

POS Keyboard

Device Control Program

Peripheral Device Conforming to OPOS Specifications

Opos POSKeyboard
Handler.exe

OPOS Driver

Barcode Scanner

OposScanner
Handler.exe

OPOS Driver

11

Chapter 2 Controlling by a Device Control Program

Environment Construction
This section describes the procedure of installing OPOS CCO and the OPOS driver in the TM-DT series.

Use OPOS_CCOs_1.14.001.msi provided with the Epson ePOS SDK package as the OPOS CCO.

1 Log on to the TM-DT series.
Refer to the Technical Reference Guide of the TM-DT series.

2 Install the OPOS driver and check the logical device name.
Refer to the manual provided with the OPOS driver.
When controlling multiple peripheral devices, install the OPOS driver for each peripheral device to
control, and check the logical device name.

3 Run OPOS_CCOs_1.14.001.msi and install OPOS CCO.
Follow the instructions on the installation screen of OPOS_CCOs_1.14.001.msi.

4 Use the test tool provided with the OPOS driver to ensure that the peripheral devices are
running normally.
Refer to the manual provided with the OPOS driver, and implement the operations when necessary.

When evaluating or controlling the peripheral devices, the OPOS log may be checked. So, activate the
remote desktop (remote access) function and similar as necessary.

Be sure to install OPOS CCO after installing the OPOS driver.
If the reverse procedure is followed, the OPOS CCO on the OPOS driver will be overwritten, and it may
no longer be controlled from the TM-DT series.
Even when you are adding the peripheral devices to be controlled after constructing the environ-
ment, first install the OPOS driver, and then install OPOS CCO again by overwriting.

12

Chapter 2 Controlling by a Device Control Program

Device Registration
This section describes the procedure of registering the peripheral devices to be used in the TM-DT series.

1 Start EPSON TMNet WebConfig.
Refer to the Technical Reference Guide of the TM-DT series.

2 Select Web service settings - Control program - Device registration to open the
Device registration screen.

13

Chapter 2 Controlling by a Device Control Program

3 Configure the following settings and click Add.
Configure the settings for each peripheral device to be controlled.
In Device ID, specify the logical device name confirmed at the time of installation of the OPOS driver.

4 When registration is complete, the registered information is displayed in Registered
devices.
Click Delete to delete the corresponding registered information.

Peripheral device Item to set Setting value

MSR Device ID Logical device name

Control program OposMSRHandler.exe

POS keyboard Device ID Logical device name

Control program OposPOSKeyboardHandler.exe

Barcode scanner Device ID Logical device name

Control program OposScannerHandler.exe

14

Chapter 3 Developing a Device Control Program

Developing a Device Control Program
This section describes the method of registering the information necessary for developing a device control
program, and the developed device control program in the TM-DT series.

Overview
When a command for starting communication with the peripheral devices is executed from ePOS SDK, the ePOS-
Device Service starts the device control program.

Control the peripheral devices by the device control program that has been started.

Configuration of a Device Control Program

Configure the device control program under the following conditions:

❏ Create an execution file in the .exe format.

❏ Do not include multiple execution files in a single device control program.

❏ Use the file provided with the Epson ePOS SDK package as GGateway.dll.

Application

TM-DT Series

ePOS-Device Service

Arbitrary Peripheral Device

Device Control
Program

Manufacturer's Driver*

* Prepare as required according to the device control program to be developed.

GGateway.dll

Execution File

15

Chapter 3 Developing a Device Control Program

Operation Sequence

The operation sequence between the ePOS-Device Service and the device control program is shown below.

This is a sequence diagram for performing control from the Web application developed by using Epson ePOS
SDK.

ePOS-Device Service Peripheral DeviceWeb App

1 : Connect()

3 : createDevice()

2.1 : callback_connect()

6 .1: callback_createDevice()

Control target is the peripheral device
corresponding to the device ID

Application TM-DT Series Peripheral Device
Driver/Firmware

ePOS SDK GGateway.dll

11 : onreceive

14 : deleteDevice()

17.1 : callback_deleteDevice()

18 : Disconnect()
18.1 : Request disconnection ()

17 : close_device response()

14 .1: close_device request()

11 : device_data response()

6 : open_device response()

3.1 : open_device request()

2 : connect response()

1.1 : connect request()

Execution file

<<create>>
4: Start()

Pass the device ID by
the startup argument

5 : Open()
5.1: Establish connection()

Execusion result

16.1 : Terminate connection() 16: Close()

Execusion result

15: End process()

13.1: Receive() 13: Receive()

Notify termination

12: Receive()

10.1: Send()
10: Send()

Execusion result

9: Command according to
the message()

Execusion result

7.1: Receive()
7: Receive()

Element object

4.1: Initializing process()

8: send
8.1: open_device request()

16

Chapter 3 Developing a Device Control Program

Sample Program

The following files are included in the sample program file (DeviceControlProgram_Sample.zip) for the device
control program.

Filename Description

ExecuteFiles GGateway.dll This is a communication library for enabling the device control
program to send and receive data to/from the ePOS-Device Ser-
vice.

It is used in combination with the execution file to be developed.

Sample01.exe This is the sample program of the execution file.

DevCtrlPrgTester.exe This is a tool for checking the operation of the developed device
control program.

Sample01Project This is a set of source files of Sample01.exe.

17

Chapter 3 Developing a Device Control Program

Methods Provided by GGateway.dll
GGateway.dll provides methods for the ePOS-Device Service to send and receive data to/from the execution file.

Open Method

This method is used to execute the Open processing. After the completion of the processing, the processing
results are returned to the execution file.

Syntax

int Open(int Port, char* DeviceID, bool XmlLog, bool
SingleThreadApartment);

Parameter

Return value

Setting value Description

Port This is the port number for communicating with the
ePOS-Device Service.

Set the value passed by the startup argument.

DeviceID Device ID of the peripheral device to be used.

Set the value passed by the startup argument.

XmlLog Setting for whether or not to output the reception/
transmission XML log (Specify "false" when sending/
receiving data concerning individual information.)

SingleThreadApartment Set the apartment to which the device control pro-
gram belongs.

true: SingleThreadApartment

false: MultiThreadApartment

Return value Contents

GG_SUCCESS(0) Processing successful.

GG_SOCKET_ERROR(-1) An error occurred during communication with the
ePOS-Device Service.

GG_INTERNAL_ERROR(-2) An internal error occurred.

GG_PARAM_ERROR(-3) A parameter error occurred.

GG_EPOS_SYS_ERROR(-4) A system error occurred.

GG_ALREADY_OPENED(-5) Already open.

18

Chapter 3 Developing a Device Control Program

Receive Method

This method is used to await the reception of data from the ePOS-Device Service. Analyze the received
command, and save data in the parameter. After the completion of the processing, the processing results are
returned to the execution file.

Syntax

int Receive(char* MethodName, Element* ReceiveData,
unsigned int* SequenceNo);

Parameter

Return value

Setting value Description

MethodName Pointer in which the ePOS method name of the
reception data is saved.

ReceiveData Pointer of the Element object in which the reception
data is saved.

SequenceNo Pointer in which the sequence number of the recep-
tion data is saved.

Return value Contents

GG_SUCCESS(0) Processing successful.

GG_SOCKET_ERROR(-1) An error occurred during communication with the
ePOS-Device Service.

GG_PARAM_ERROR(-3) A parameter error occurred.

GG_EPOS_SYS_ERROR(-4) A system error occurred.

GG_RECV_DISCONNECT(-7) A disconnection request is received from the ePOS-
Device Service.

GG_NOT_OPENED(-8) Not opened.

19

Chapter 3 Developing a Device Control Program

Send Method

This method is used to send data to the ePOS-Device Service. After the completion of the processing, the
processing results are returned to the execution file.

Syntax

int Send(string EventName, Element* SendData, unsigned int
SequenceNo);

Parameter

Return value

Close Method

This method is used to perform the close processing with the ePOS-Device Service. After the completion of the
processing, the processing results are returned to the execution file.

Syntax

int Close();

Return value

Setting value Description

EventName ePOS event name

SendData Pointer of the transmission data object

SequenceNo Sequence number

Return value Contents

GG_SUCCESS(0) Processing successful.

GG_SOCKET_ERROR(-1) An error occurred during communication with the
ePOS-Device Service.

GG_PARAM_ERROR(-3) A parameter error occurred.

GG_EPOS_SYS_ERROR(-4) A system error occurred.

GG_NOT_OPENED(-8) Not opened.

Return value Contents

GG_SUCCESS(0) Processing successful.

GG_SOCKET_ERROR(-1) An error occurred during communication with the
ePOS-Device Service.

GG_NOT_OPENED(-8) Not opened.

20

Chapter 3 Developing a Device Control Program

Element Object
The Element object is used by the Receive method and Send method between the execution file and
GGateway.dll. The structure of the Element object, and the acquisition of information and method for making
settings are as described below.

Structure of element object

Constructor

Used to generate the Element object. It is provided in four formats.

Syntax

Element();
Element(char* Name);
Element(char* Name, char* Value);
Element(char* Name, long Value);

Parameter

m_strName Element name of Element

m_strValue Element value of Element

m_strType Type of Element (String/numeric value)

m_bArray Truth value of whether or not the Element is an array

m_children Pointer array of child Element

m_parent Address of parent Element (NULL in the case of the highest
order)

Setting value Description

Name Element name set in the Element object.

Value String value of the element / numeric value of the
element set in the Element object.

21

Chapter 3 Developing a Device Control Program

getName Method

This method is used to acquire the element name from the Element object.

Syntax

char* getName()

Return value
Element name of Element

getValue Method

This method is used to acquire the element value from the Element object by a string.

Syntax

char* getValue()

Return value
Element value of Element

getType Method

This method is used to acquire the type of the element value from the Element object by a string.

Syntax

char* getType()

Return value
Type of Element

22

Chapter 3 Developing a Device Control Program

getParent Method

This method is used to acquire the address of the parent element of the Element object.

Syntax

Element* getParent();

Return value
Pointer of the parent Element

haveChild Method

This method is used to acquire the child Element existence information of the Element object.

Syntax

bool haveChild();

Return value

getChildrenNum Method

This method is used to acquire the number of child Elements of the Element object.

Syntax

int getChildrenNum ();

Return value
Number of child Elements

Return value Contents

true A child Element exists.

false A child Element does not exist.

23

Chapter 3 Developing a Device Control Program

getChild Method

This method is used to acquire the child Element of the Element object.

Syntax

Element* getChild(int Num);
Element* getChild(char* Name);

Parameter

Return value

addChild Method

This method is used to add a child Element to the Element object.

Syntax

bool addChild(Element* Child);

Parameter

Return value

Setting value Description

Num Element number of the child Element to be acquired.

Name Element name of the child Element to be acquired (If
a child Element with the same name already exists,
the child Element found first i acquired.)

Return value Contents

Pointer of child Element Pointer of child Element matching the parameter

NULL A child Element does not exist.

Setting value Description

Child Pointer of the child Element to be added to the Ele-
ment object

Return value Contents

true Process succeeded.

false Process failed.

24

Chapter 3 Developing a Device Control Program

Adding a Program
This section describes the procedure of adding the developed device control program to the TM-DT series.

1 Start EPSON TMNet WebConfig.
Refer to the Technical Reference Guide of the TM-DT series.

2 Select Web service settings - Control program - Add/delete to open the Control pro-
gram screen.

3 Click Browse and select GGateway.dll.

25

Chapter 3 Developing a Device Control Program

4 Click + to add a row, and click Browse to select the developed execution file.

5 Click Add.

6 When addition is complete, the registered information is displayed in Registered con-
trol programs.
Click Detailed display to view the configuration file of the device control program.
Click Delete to delete the corresponding registered information.

Select the required file according to the configuration of the developed device control program.

26

Chapter 3 Developing a Device Control Program

Device Registration
This section describes the procedure of registering the peripheral devices to be controlled by the developed
device control program in the TM-DT series.

1 Start EPSON TMNet WebConfig.
Refer to the Technical Reference Guide of the TM-DT series.

2 Select Web service settings - Control program - Device registration to open the
Device registration screen.

3 Configure the following settings and click Add.
Configure the settings for each peripheral device to be controlled.

4 When registration is complete, the registered information is displayed in Registered
devices.
Click Delete to delete the corresponding registered information.

Item to set Setting value

Device ID Optional device ID

Control program Device control program added in Adding a Program

27

Chapter 4 Controlling by a Device Control Script

Controlling by a Device Control Script
This section describes the method of controlling the key input devices and serial communication devices by
using the device control script loaded in the TM-DT series.

In the TM-DT series, a device control script is available for each peripheral device.

Peripheral devices corresponding to the device control script can be controlled.

Application

TM-DT Series

ePOS-Device Service

MSR

MSR_V3TU_
FK.js

Keyboard

Keyboard_
Generic.js

Scanner_
Generic.js

Device Control Script

Serial Communication
Device

Barcode Scanner

SimpleSerial_
Generic.js

28

Chapter 4 Controlling by a Device Control Script

Device Registration
This section describes the procedure of registering the peripheral devices to be used in the TM-DT series.

Key Input Device

1 Connect the peripheral devices to be used to the TM-DT series.

2 Start EPSON TMNet WebConfig.
Refer to the Technical Reference Guide of the TM-DT series.

3 Select Web service settings - Device registration - Key input device to open the
Device registration screen.

29

Chapter 4 Controlling by a Device Control Script

4 Configure the following settings for each peripheral device to be used, and click Add.

5 When registration is complete, the registered information is displayed in Registered
key input devices.
Click Delete to delete the corresponding registered information.

Peripheral device Item to set Setting value

MSR Device ID Optional device ID

Device name Select the appropriate device from the list.

Control script MSR_V3TU_FK.js

Keyboard Device ID Optional device ID

Device name Select the appropriate device from the list.

Control script Keyboard_Generic.js

Barcode
Scanner

Device ID Optional device ID

Device name Select the appropriate device from the list.

Control script Scanner_Generic.js

30

Chapter 4 Controlling by a Device Control Script

Serial Communication Device

1 Connect the peripheral devices to be used to the TM-DT series.

2 Start EPSON TMNet WebConfig.
Refer to the Technical Reference Guide of the TM-DT series.

3 Select Web service settings - Device registration - Serial communication device to
open the Device registration screen.

4 Configure the following settings for each peripheral device to be used, and click Add.

*1: Displayed only for TM-T70II-DT/TM-T88V-DT/TM-H6000IV-DT.
*2: Displayed only for TM-T70II-DT2/TM-T88VI-DT2.

Set the Communication speed (bps), Data bit, Parity, Stop bit, and Flow control according to the
peripheral device to be used.

Peripheral device Item to set Setting value

Serial communication
device

Device ID Optional device ID

Device name *1 Select the appropriate device from the list, or select the port to
be used.

Port *2 Select the port to be used.

Control script SimpleSerial_Generic.js

31

Chapter 4 Controlling by a Device Control Script

5 When registration is complete, the registered information is displayed in Registered
serial communication devices.
Click Delete to delete the corresponding registered information.

32

Chapter 5 Developing a Device Control Script

Developing a Device Control Script
This section describes the information necessary for developing a device control script, and the method of
registering the developed device control script in the TM-DT series.

The peripheral device control using the developed device control script is supported by Epson ePOS SDK for
JavaScript and ePOS-Device XML.

Overview

Epson ePOS SDK for JavaScript

When the createDevice method of ePOS SDK API is executed, the ePOS-Device Service generates the objects of
the device control script.

Control the peripheral devices by the generated objects.

Web Application

TM-DT Series

ePOS-Device Service

ePOS SDK API

Arbitrary Peripheral Device

Device Control
Script

DeviceConnection ClientConnection

33

Chapter 5 Developing a Device Control Script

ePOS-Device XML

When the open_device message is sent, the ePOS-Device Service generates the objects of the device control
script.

Control the peripheral devices by the generated objects.

Device Control Script Objects

In the device control script, the following objects are passed from the ePOS-Device Service. The device control
script communicates with applications and peripheral devices by using these objects.

Functions that Use Device Control Script Objects

The available functions that use the device control script API are as follows.

❏ Calling of user-defined events for device objects in applications

❏ Sending of data to peripheral devices

❏ Receiving of data generated in peripheral devices

Object Description

ClientConnection Object used to send data to device objects in the applications

DeviceConnection Object used to send and receive data to/from peripheral devices

Application

TM-DT Series

ePOS-Device Service

Arbitrary Peripheral Device

Device Control
Script

DeviceConnection ClientConnection

Socket I/F

34

Chapter 5 Developing a Device Control Script

Configuration of a Device Control Script

A device control script is developed in JavaScript. Perform coding under the following conditions:

❏ The codes necessary for device control shall be compiled in one file.
(This is because the device setting can be registered only in one file when using EPSON TMNet WebConfig.)

❏ The part of the file name before the first dot shall be same as the name of the constructor.

Ex.) Filename: Keyboard_Generic.ver1.0.js -> Name of constructor: Keyboard_Generic

❏ Declare exports for constructor external references.

Ex.) exports.Keyboard_Generic = Keyboard_Generic;

❏ The constructor shall have two arguments.

❏ The device control script must have the following properties. Constructors must be configured with appropri-

ate names.

 DEVICE_TYPE property (Type of object: String)

 DEVICE_GROUP property (Type of object: String)

❏ The onDeviceData method must be created to receive data generated by peripheral devices.

Refer to Device Control Scripts Naming Object for more information.

❏ Methods corresponding to methods for device objects that function in applications must be created.
Refer to User-defined Event for more information.

Setting value Description

type_keyboard Specifies the use of keyboard devices.

type_msr Specifies the use of MSR.

type_scanner Specifies the use of barcode scanners.

type_simple_serial Specifies the use of simple serial communication.

Setting value Description

group_hid Specifies the use of key input devices operable via HID drivers.

group_serial Specifies the use of serial communication devices.

group_other Specifies the use of other peripheral devices.

35

Chapter 5 Developing a Device Control Script

Example device control script structure

// Declares exports
exports.Keyboard_Generic = Keyboard_Generic;

// Defines a function with the same name as the filename with two arguments
function Keyboard_Generic(clientConn, deviceConn){
// Defines the DEVICE_TYPE properties

this.DEVICE_TYPE = ‘type_keyboard’;
// Defines the DEVICE_GROUP properties

this.DEVICE_GROUP = ‘group_hid’;
this.clientConn = clientConn;
this.deviceConn = deviceConn;

......

......
}

Keyboard_Generic.prototype = {
// Defines the onDeviceData method

onDeviceData : function(event, keycode, ascii){…},
// Defines a method corresponding to a device object

setprefix : function(data){…}
}

36

Chapter 5 Developing a Device Control Script

List of Device Control Script APIs
Device control script APIs are preconfigured with the following objects.

❏ ClientConnection Object

❏ DeviceConnection Object

❏ Device Control Scripts Naming Object

ClientConnection Object

This object is passed to the first parameter from the device control script constructor.

DeviceConnection Object

This object is passed to the second parameter from the device control script constructor.

Device Control Scripts Naming Object

This object receives data from peripheral devices.

API Description

Send send This object sends data to device objects oper-
ating in the Web browser.

API Description

Send send This object sends data to serial communication
devices.

API Description

Receive results onDeviceData Event (key input device) Event that receives data from key input devices

onDeviceData Event (serial communica-
tion device)

Event that receives data from serial communi-
cation devices

User-defined Event Event that receives results of API execution
regarding device objects operating in the Web
browser

37

Chapter 5 Developing a Device Control Script

ClientConnection Object

send

This object sends data to device objects operating in the Web browser.

Syntax

send(event, data);

Parameter

event

data

Sample program
This sample program calls the device object onkeypress event and uses the onkeypress event data parame-

ter to receive a value of 49 from data.keycode and a value of 1 from data.ascii.

Setting value Description

String Specifies the name of the device object event

Setting value Description

Object Specifies the data to be passed to the device object
event.

data = {'keycode' : 49, 'ascii' : '1'};
clientConn.send('onkeypress', data)

38

Chapter 5 Developing a Device Control Script

DeviceConnection Object

send

This object sends data to serial communication devices.

Syntax

send(data);

Parameter

data

Supplemental information
Data cannot be sent to input devices operable via HID drivers.

Setting value Description

Buffer Specifies data to send to peripheral devices.

39

Chapter 5 Developing a Device Control Script

Device Control Scripts Naming Object

onDeviceData Event (key input device)

This event receives detected data from key input devices operable via HID drivers.

Create this event when using device control scripts for key input devices.

Syntax

onDeviceData(event, keycode, ascii);

Parameter

event
Receives key operation state information.

keycode

ascii

Supplemental information
❏ For details on values received by keycode, refer to the User’s Manual of Epson ePOS SDK for JavaScript or

ePOS-Device XML.

❏ A value of "undefined" is input when there is no text corresponding to the keycode received by the ascii

parameter.

Value Description

1 Key down

2 Key up

Value Description

Number Keycode

Value Description

String Text corresponding to the operated key

40

Chapter 5 Developing a Device Control Script

onDeviceData Event (serial communication device)

This event receives detected data from serial communication devices.

Create this event when using device control scripts for serial communication devices.

Syntax

onDeviceData(data);

Parameter

data

User-defined Event

This event receives results of API execution regarding device objects operating in the Web browser.

Syntax

Name specified with callEvent(data);

Parameter

data

Supplemental information
For details on the callEvent method, refer to the User’s Manual of Epson ePOS SDK for JavaScript or ePOS-

Device XML.

Value Description

Buffer Data received from serial communication devices

Value Description

Object Object with parameter specified by the callEvent
method of device object.

41

Chapter 5 Developing a Device Control Script

Adding a Script
This section describes the procedure of adding the developed device control script to the TM-DT series.

1 Start EPSON TMNet WebConfig.
Refer to the Technical Reference Guide of the TM-DT series.

2 Select Web service settings - Control script - Add/delete to open the Control script
screen.

3 Click Browse to select the device control script to be added, and click Add.

42

Chapter 5 Developing a Device Control Script

4 When addition is complete, the registered information is displayed in Registered con-
trol scripts.
The scripts are automatically classified according to the setting value specified in the DEVICE_TYPE
property and the DEVICE_GROUP property.
Click Delete to delete the corresponding registered information.

43

Chapter 5 Developing a Device Control Script

Device Registration
This section describes the procedure of registering the peripheral devices to be controlled by the developed
device control script in the TM-DT series.

1 Connect the peripheral devices to be used to the TM-DT series.

2 Start EPSON TMNet WebConfig.
Refer to the Technical Reference Guide of the TM-DT series.

3 From Web service settings - Device registration, open the Device registration screen
of the peripheral device to be used.

4 Configure the following settings and click Add.
Configure the settings for each peripheral device to be controlled.

Item to set Setting value

Device ID Optional device ID

Device name Select the appropriate device from the list, or select the port to be
used.

Control script Device control script added in Adding a Script

44

Chapter 5 Developing a Device Control Script

5 When registration is complete, the registered information is displayed in Registered
key input devices.
Click Delete to delete the corresponding registered information.

	Cover
	Safety Precautions
	Meaning of Symbols

	Usage Limitations
	About this Manual
	Purpose of this Manual
	Organization of this Manual

	Contents
	Chapter 1 Overview
	Supported Printers and Peripheral Devices
	Supported Printers
	Controllable Peripheral Devices

	Environmental Settings
	Windows Settings
	EPSON TMNet WebConfig

	Chapter 2 Controlling by a Device Control Program
	Environment Construction
	Device Registration

	Chapter 3 Developing a Device Control Program
	Overview
	Configuration of a Device Control Program
	Operation Sequence
	Sample Program

	Methods Provided by GGateway.dll
	Open Method
	Receive Method
	Send Method
	Close Method

	Element Object
	Constructor
	getName Method
	getValue Method
	getType Method
	getParent Method
	haveChild Method
	getChildrenNum Method
	getChild Method
	addChild Method

	Adding a Program
	Device Registration

	Chapter 4 Controlling by a Device Control Script
	Device Registration
	Key Input Device
	Serial Communication Device

	Chapter 5 Developing a Device Control Script
	Overview
	Epson ePOS SDK for JavaScript
	ePOS-Device XML
	Device Control Script Objects
	Functions that Use Device Control Script Objects
	Configuration of a Device Control Script

	List of Device Control Script APIs
	ClientConnection Object
	DeviceConnection Object
	Device Control Scripts Naming Object

	ClientConnection Object
	send

	DeviceConnection Object
	send

	Device Control Scripts Naming Object
	onDeviceData Event (key input device)
	onDeviceData Event (serial communication device)
	User-defined Event

	Adding a Script
	Device Registration

